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Abstract. The dynamics of the avalanche width in the recently proposed evolution model is
described using a random walk picture. In this approach the critical exponents for avalanche
distribution and avalanche average time are found to be the same as in the previous mean-
field approximation whereas the critical value of the fitness is in perfect agreement to previous
numerical estimates. A continuous time random walk picture is studied as a possible way to
improve the mean-field treatment.

0. Introduction

In Nature there are non-equilibrium systems which present a scale invariant distribution for
the events and the structures produced during their evolution. They can be found in fields
such as interface growth, astrophysics, geophysics, biological evolution, the stock market,
etc [1,2,6]. In the last decade stochastic models were proposed which are able to exhibit
this kind of behaviour starting from simple dynamical rules between elementary agents. The
dynamics of these models is extremal; such a system evolves following the global extremal
value of some relevant parameter [1, 6].

The Bak—Sneppen (BS) model of evolution has been extracted from more a complex
model which describes the evolution of genotype in the fitness landscape [8]. The model is
an alternative to the catastrophic theory of evolution since it can produce large extinction
events in the ecosystem using its own rules, while catastrophic theory claims that external
factors are the first cause for large extinction events recorded during Earth history. The
mathematical simplicity of the model has attracted numerical studies [2,5,7] and mean-
field analytic treatments [3, 4].

The model treats a number &f species interacting on a one-dimensional chain (a simple
picture of the food chain). Each species is assigned a scalar parameter called the fitness with
values in the interval0, 1). It is thought of as a measure for the adaptability of a species to
the ecosystem in a coarse grain description. One step of the dynamics consists of choosing
the site with the smallest fitness, then new random independent values frof, the
interval are attributed to this site and to its two neighbours with a uniform distribution.
We define ar-avalanche (O< A < 1) as the number of steps between two consecutive
configurations with all the fithess values greater thatNumerically it has been found that
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the stationary state exhibits scaling laws in thie— oo limit for the avalanches temporal
distribution atiiticas ~ 0.667 [5]

pt)y~t—" T — 00

with T &~ 1.07. The mean avalanche temporal size diverges as Acitical
t_% |)L - )\critical|_y

with y ~ 2.7 [5]. The model also shows critical behaviour in the versions with more than
one dimension or with slightly modified dynamics [5, 7].

In this paper we propose a new approximated solution. Our treatment focuses on the
dynamics of the avalanche spatial width in a mean-field approach. In the BS model the
avalanche width is a random variable having memory effects; this is removed by updating
all the sites within an avalanche (see section 2 for more details), and thus we keep track
only of the spatial extension of the avalanches. This is not possible in the infinite range
approximation [4]. We found the value af;ijica = % which is very close to the numerical
result, whereas in the infinite range modgliical = %

This paper is organized as follows. Section 1 presents the general master equation for
the fitness distribution and the derivation of the mean-field equation found with probabilistic
arguments in [2]. Section 2 introduces our analytical treatment based on a mapping in a
random walk problem. In this approximation we compute exactly the value.gfy and
the critical exponents and y as they were defined in [5]. Section 3 presents a way to
improve the method introducing a continuous time random walk description. A numerical
study shows the improvement of the critical exponenbut Aiicar remains fixed. The
details of the calculation are given in the appendix.

1. The master equation

The BS model is completely characterized by the probabhitys, x,, ..., xy; ¢) of finding

the system in the statey( xp, ..., xy) at the timer given the initial distribution at = 0.
Because there are no memory effects, the evolution of the system is described by the
following master equation,

. _ I ’ . ’ o
P(xq,xp,...,xn;t+1) = E / dx; dxi_ldxH_lPstP(l, XLy ooy Xj 15 X[y Xjiqs v oy XN)
i

XP (X1, ooy X] 4, X[, X[ g5 oo XNGT) 1)
where periodic boundary conditions were assumed &gd:; x1,...,x/ 1, X/, X/ 4, ...,
xy) is the probability to have activity at site if the system is in the configuration
(X1, ..., Xx/_4,X{, X[ 4, ..., xy). For the original one-dimensional BS model

Py(isx1, X, . ... xy) = [ [0 — x) @)

J#i

wherefd(x) is the step function

1 if x>0
O(x) = ,
0 if <O.
At stationarity, integrating in (1) over,, ..., xy we easily obtain the following relation,

3
Pac(1, x1) + Pac(2, x1) + Pac(N, x1) — N =0 3
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where
Pac(i; xj) = / drp...dxj_gdxjpq... ey Ps(is xg, ..., xN) P (X1, ..o, XN)

is the probability of having activity in sité when in sitej the fithess has the value
xj. If in equation (3) we try a stationary self-consistent mean-field solution of the form
p(x1,...,xy) = p(xy)p(x2) ... p(xy), after some algebra we obtain

2 N 2N
(1—N_1>Q () + 700 +3x=3=0 (4)

with Q(x) = fxl p(x)dx’. Equation (4) was previously obtained in [3], in thée — oo
limit one finds p(x) = g,x € (Acritical, 1) and p(x) = 0 whenx € (0, Acritical) , Acritical = %
whereas numericallygitical ~ % [2]. The statistical independence between the sites in the
mean-field solution allows the reduction of the problem at a one-dimensional random walk
on the positive semi-axis where the stateepresents the state of the system witfitness
values greater thehn. The solution developed in [4] gives the samgiica as predicted by
equation (4) and the critical exponents= g A=1

2. The new approach

The size of ar-avalanche is defined as the number of steps between two consecutive events
with no fitness below the valug;, hence, it is a quantity characterizing time intervals. For
a system of sizev, with free boundary conditions, we define the avalanche width at a
given timet as the number of sites between the left most species with the fithess lees than
A and the right most species with the fitness less thaThe species between these two
sites can have any value of the fithess. This is a quantity which characterizes the spatial
structure of the system. The width evolution has memory effects for the originally proposed
dynamics; in the spirit of the mean field we approximate the evolution of the avalanche
width as follows: at every step the species between the right and left extremities of the
avalanche are updated independently and we also update the nearest neighbour site at the
right or left extremity of the avalanche accounting for the fact that in the original dynamics
an avalanche can increase its width only with one site. The complete randomness makes
the movements of the two extrema completely equivalent and for this reason we choose to
move only in one direction. At the origin we also accept a two sites step.

In this approach the avalanche width is a random variable without memory effects on
a discreet set of states which now can be extended to the entire non-negative semi-axis
with the zero state corresponding to the state with no species bland the state: to a
realization of the BS model with sites between the left most and the right most sites with
the value of their fitness less than The evolution rules produce the following transition
matrix for the avalanche width:

1-=12 221-21) 22 0 0
@A-=22% 22(1-2») A2 0 0
p=| @=1° Q-2 2°1-2) 22 0 ...

A=0* @—-21% 3N2A—212 222(1—1r) A2
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The formulae for the matrix elements are

poo = (1—2)? por=2x(1—-1) po2 = A2 poj =0 j>2
pio=@1-n"  j=>1

pi=G+Dra-n/ =1

pia = jA2(L— )7t ji>1

Pj+1,i-1 ifl>2 andj <l-1
pPji = . (6)

0 otherwise
with the convention thap;; is the transition probability from the staieto the statej and
i,j€{0,1, 2 ...}. The distribution probability of avalanches is the first return probability
distribution for the above-defined random walk and it can be written as

oo (o]
pn+2) =) poipy; pio+ Y po2by’ pio @)
i=1 i=1

whereﬁi’? of thei, j element of thexith power of the matrixp describing the evolution of

the random walk outside of the origin. The matﬁ;%“) is obtained from the matriy by
setting to zero its first row and first column. The first (second) term on the right-hand side
of equation (7) represents the first return probability aftesteps when the initial step is
single (double).

Since we are concerned only with the asymptotic behaviour of the model we can modify
the first two columns of the transition matrix so as to have the same elements on the
diagonals of thep matrix. Keeping the closure relati@j pij = 1 we produce the following
matrix:

(1= 1)2 20(1—2) A2 0 0
A—102A+20) 2221 - A2 0 0
o= a- M3A+30) 321 -1)2 2221 -1) 22 0o ... | ©)

A —D*A+40) 421 —-21)3% 321 —-21)2 2220 —-1) A?

The asymptotic behaviour of the first return time distribution is the same for both random
walks described by the matricgsand p’. In fact, in equation (7) we can go a step further
developingﬁg‘) with respect to site 1. The remaining matrix from the second column and

second row is identical with thg" matrix obtained fronp’ in the same way ag from p:

J o)
Py = > 11 (Z P~12ﬁg13)13k1> (1= 81) propy | + 81 51y) 9)
nit-tn; =1 N k=2

=n—n’

with n = n’+n1+- - -+n; andé;; the Kronecker symbol. The terms in equation (9) represent
multiple returns on site 1 before the last step to the origin. Innthe oo limit the terms
with »” and all then; bounded but one have the same asymptotic behavioﬂfi’ébecause
they are generated by the same matrix; the other terms will decay exponentially, due to
the p;, factor, or as a power of the leading term when there are two or more unbounded
indices. Ifi = 1, n’ has to be bounded to avoid the exponential decay.

In the appendix we present the computation for the generating function of the avalanche
distribution probability R(z) = >,z P(r) (A15). The average time for the avalanche
distribution is

=

dR(S)‘ _ dR() dg (10)
z=1

dz Tod(g) dz

z=1
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Using equation (A15) we obtain that the mean time of the avalanche distribution can be
written as

I~ A — Agriticall 7 (11)

when |A — Aqiticall < 1, with the critical exponenyy = 1 and the critical value of,
Acritical = % We can also compute the asymptotic behaviour of the avalanches probability
distribution using equation (A16) [10]. For= % we found

pt) ~t7Y t— 00 (12)

with T = 3. For A # 2 the decay is exponential.

In the previous equations the critical exponent g andy have values as obtained in
the mean-field solution [4], whereasyitica = % is in extremely good agreement with the
critical value of found in Qumerical simulations [2, 6, 7]. In the language of the Markov

chain one can say that= £ is the transition point between persistent staﬁeg(%) and

transient states\(> %) [9]. Nevertheless. is not a dynamical parameter for the BS model,
since it introduces an ‘observational window’ for a certain variable which we may choose
from the set of statistical variables compatible with the dynamics of the BS model. SOC
appears when there is at least one statistical variable with events at all scale lengths. In our
approacht-avalanches are bounded to the origin fo& % and they escape te for A > %

At A = % we have the peculiar stationary state in which the average time of avalanches is
diverging; therefore, there are events on the all time scales.

3. Improving mean field

A significant difference between the random walk proposed in the previous section and
the BS model consists of the fact that in the latter the system will spend a characteristic
number of steps in a given state because the activity can appear between the leftmost and
the rightmost sites where the fithess is less thanOne possible way to improve our
approximation is to promote the previous random walk to a continuous time random walk
with inhomogeneous waiting time distributions, each waiting time distribution allowing for

the persistence of a given size avalanche. The general equation for such a process can be
written [10]

o0 t
Pu(t) = e + ) /O i € pii Pt — ') dt’ (13)
j=0

where P, (¢) is the probability density of having the walker in statat epocty ifatr =0
it was in statei, p;; are the elements of thg’ matrix (8) andc; 1'is the characteristic
waiting time in sitei and it represents the average lifetime for an avalanche ofisize
the BS model. Intuitivity the average time of an avalanche is a function of the average
number of sites with fitness less thanwhich is increasing with the avalanche width; at
criticality we propose the behaviourg‘1 ~ X fori > 0 and cgl = o with @ a given
constant.

An avalanche is now defined as an off-time interval from the origin, whose probability
distribution is independent ef [10]. The avalanche distribution function can be expressed
as

pav(t) =) p(m) pu(t) (14)

n=1
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Figure 1. The first return distribution foy = 1(O), x = 1.5(0), x = 2(a), x = 2.5(+). The
obtained values for (table 1) are very well fitted by the formula= 1+ 1/(x + 2).

wherep(n) is the probability of am step excursion out of the origin and it is the first return
probability distribution for the random walk defined in sectionpg(t) dr is the probability
of the first return to the origin in the intervals + dr aftern steps. Intuitively we may say
that forax < % the exponential decay gf(n) will prohibit the long time avalanches and the
average off-time will be finite [10]. I = % there is a qualitative change; evenpif(¢)
decays exponentially the scale invariancep@t) for largen leads to critical behaviour.

We have performed a numerical simulation for the continuous time random walk for
both transition matricep and p’ and we have found the same asymptotic behaviour at
Acritical = % The size of the lattice was large enough to avoid any size effects and the
waiting time distribution functions have been chosen exponentials with a site-dependent
mean lifetimer; = ci‘l = iX. The simulations were made choosing four valges 1, 1.5,

2, 2.5; the asymptotic behaviour is shown in figure 1. The numerical values for the critical
exponentr (table 1, figure 1) decreases monotonically aincreases; a very good fit is
given by the formular = 1+ 1/(x + 2). This behaviour is intuitively clear: the avalanche
tend to last longer if the characteristic lifetimes grow faster and 1 if y — oc.



The Bak—Sneppen evolution model 2615

Table 1. The numerical values of the critical exponenfor four values ofy.
X T

1.0 135+0.01
1.5 130+0.01
20 125+0.01
25 1224001

4. Conclusions

We have proposed a new approach to the Bak—Sneppen evolution model based on the
dynamics of the avalanche width. The critical exponents are equal to those found previously
in the mean-field solution [4], in fact they are universal properties of the one-dimensional
random walk. The valu@itical = % is very close to the numerical results reported in [3, 7].
Therefore, we believe that the dynamics of the avalanche width contains useful information
on the critical behaviour for this model. The structure of the generating function (A15) is
intimately connected with the critical behaviour; the branch line appearing ivthe oo

limit generates the algebraic decay for the probability distribution of the avalanches. The
continuous time random walk picture allows for a more careful analysis of the avalanche
structure and it improves the critical exponent keeping.iica at the same value; it also
gives an intuitive decomposition of the algebraic decay distribution of the avalanches in a
convolution of Poisson distributed events. The approximation can be extended to arbitrary
dimensions. The active sites can be included in a minimal convex voldm#/e update
independently all the sites i and the sites next t&. The maximum diameter of this set

will have the dynamics described by the transition magrixherefore, the critical behaviour

will remain unchanged.
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Appendix

We present the detailed calculation for the generating function of the avalanche probability
distribution. We use the special form of the matjik obtained from the matrixp’ (8)
removing the line and the row with index zero. This matrix has equal diagonal elements
and we can write it as a linear combination of one-diagonal matiicdsfined as follows:

Skvi i>0
U = (A1)
Sk 1+i 1<0

Iy being the identity matrix. From the definitions (A1) we can compute the commutator
TO =nI_;, —I1_;I;; fori > 0 we have

(T = 81411 (A2)
and forij > 0 we have the property
Ll =1, (A3)
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The matrixp’ can be expressed as

o0
P=2L+ 220 - Do+ Y (i + 222 A - )T
i=1

o0
=22n Z(i + (A - N1 =22LA (A4)
i=0

where A = >"72,( + 1)(1 — »)'I_;. Using equation (A3) it is easy to compute thth
power of this matrix

A":Z<2”+.j_1>(1—x)f1j. (A5)
j=0 J

From equation (A2) we can compute the commutdioe= I1A, — A, I; which has only the
first column non-zero

2n+k-1
(Tou = ( L ) (1= 8. (A6)
Consequently,
3 i —1 .
(1T = ( " ) (L= 2y, (A7)
: i+n
All the previous-mentioned properties lead us to the relation
n—2
(LAY = LA" =) LT(LA)"™2 (A8)

i=0
Equation (A8) implies the following equation for the generating mat6Xz) =
Y o(APhA)Y L,

G@) =F@) — ) LTAPHG() (A9)
i=1

where F(z) = Y 2 ;A’z', z a complex number. The sums which are appearing in
equation (A9) can be performed in the following way:

= 2(k+1) Jk+1 o~ (3k+j—1 j+k 4 2(k+1) _k+1
uj(z) = Z(Ika)jl)» = Z } (A=) z
=1 =1 Jtk

. 0 1
= (1— )13 3k +j—1)... 2ke%*1
( )s;(kﬂ.)!( +j-1 £

= (1— 1/ i LY
(k + j)t dgkti
3k+j -1
=(1- )\)1 15 Z 27i f (77 _ )j+k+1
1 77j+2
=A-ne 2mi f an (=& (=n3+n—§) (A10)

where£? = (1 — A)A%z. We can perform the summation [if3/(n — &)| < 1; this set is

not empty for O< & < g\/g. There is an annulus with inner radius and external radius

obtained from the positive solutions of the equatient £)° — r = 0; more over, one of
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the roots of the polynomial»® 4+ n — £ is inside the minimal integration contodr for

0<¢ < g\/% and the other two are outside the maximal integration contour. Using the

above-mentioned properties of the matri¢ég (A3) we can compute the elements of the
matrix I, A" which appear in the expression of the generating mafiix):

ny . __ 3” - ] _ n—j+1 n _ 3” _ n+1
(1, A" = <n—j+1)(l » (1, A"z = (n+1>(1 %)
(I,A")2; = ([,A")1j-1 Jj>1

Equation (7) shows that we need to compute only the first two rows in the generating
matricesG(z) and F(z). The general formula for these matrix elementsFgt) is

o0
; 3n—j
. — 5. _ a\n—j+1 J 2n._n
Fl_,(z)—a,1+n=§j_:l(1 » (n—j 1>x o,

The previous series can be summed following the same computational path as in
equation (A10). Ifj = 1 we obtain
& "
27 Jr (= E)(=n3+n—8&)
For j > 1 we have the following expression:
£ 1 n?
A=nyt2ni Jr —nP+n—&
Fr;(z) = F1;-1(z), j > 1, becausd,A" has equal elements on diagonals, and by direct
calculation

Fr16) =1+

Fij(8) =

_ c 3n _ n+1n_1_)“ % ’73
F”(Z)_Z<n+1>(l G TRl A E Sy

n=1

In all the above formulae the contollr is the same as that used in equation (A10) and
£2 = (1 — A)A?z. Solving equation (A9), we obtain for the first two rows the solutions in
terms of the previously computed functions(z), u2(z), F1;(z) and Fy;:

R 4 71¢9)
RS e
G2 (2) = Fa(2) — 1j‘jT(Zl)(z)Flj(z).

The residue theorem allows us to compute the generating functions in terms of the third
solutions of the polynomial-® + n — &, n3(&), that solution which lies inside of the
integration contoul” in the above integrals:

n3(§)%

Gy = A=t g2 i>1 (A11)
1 1 2j

with £2 = A%(1 — 1)z and

1-iv3 _ (A+iV3(—27 + /72%2 — 1083

) = " s o + 727~ 1091 621/3

. (A13)
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From equation (7) for the avalanche probability distribution one can write the generating
function:

o0 oo

R(z) = (1= 0?2 +2%po1 ) Gu@)pio+2°poz ) Gai(2)pio
i1 i=1

182 _ A 1 i i+l .
=1=2%2+201— )z ;7“”1@)1?1,(@(1 AT A+ G+ D)

+222 ) <F2i ()~ %Fu (z)) A=A+ G+, (AL4)
i=1 -

The series which are appearing above can be summed and the closed expression for the
generating function reads

_ . ) o
R = —27 g2 4 20 ”szr;3<s>2(1+2x+ ) <1+x3’2'73(8>>

by A3 1-n36)? 1-n3(6)?

1-2
+= g (- 252)773(5)2(1 + 21+ (14 30)n3(6)?

na(§)* ( 4-— 3n3(€)2>>
142 . Al5
1—na(§)? 1—n3(8)? (A13)
Making the substitution = e~ we obtain

1— R(s) ~ s¥2 ifr=2%s5—0. (A16)

If A= % R(s) is an analytical function at the origin.
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