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Abstract. The dynamics of the avalanche width in the recently proposed evolution model is
described using a random walk picture. In this approach the critical exponents for avalanche
distribution and avalanche average time are found to be the same as in the previous mean-
field approximation whereas the critical value of the fitness is in perfect agreement to previous
numerical estimates. A continuous time random walk picture is studied as a possible way to
improve the mean-field treatment.

0. Introduction

In Nature there are non-equilibrium systems which present a scale invariant distribution for
the events and the structures produced during their evolution. They can be found in fields
such as interface growth, astrophysics, geophysics, biological evolution, the stock market,
etc [1, 2, 6]. In the last decade stochastic models were proposed which are able to exhibit
this kind of behaviour starting from simple dynamical rules between elementary agents. The
dynamics of these models is extremal; such a system evolves following the global extremal
value of some relevant parameter [1, 6].

The Bak–Sneppen (BS) model of evolution has been extracted from more a complex
model which describes the evolution of genotype in the fitness landscape [8]. The model is
an alternative to the catastrophic theory of evolution since it can produce large extinction
events in the ecosystem using its own rules, while catastrophic theory claims that external
factors are the first cause for large extinction events recorded during Earth history. The
mathematical simplicity of the model has attracted numerical studies [2, 5, 7] and mean-
field analytic treatments [3, 4].

The model treats a number ofN species interacting on a one-dimensional chain (a simple
picture of the food chain). Each species is assigned a scalar parameter called the fitness with
values in the interval(0, 1). It is thought of as a measure for the adaptability of a species to
the ecosystem in a coarse grain description. One step of the dynamics consists of choosing
the site with the smallest fitness, then new random independent values from the(0, 1)
interval are attributed to this site and to its two neighbours with a uniform distribution.
We define aλ-avalanche (0< λ < 1) as the number of steps between two consecutive
configurations with all the fitness values greater thanλ. Numerically it has been found that
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the stationary state exhibits scaling laws in theN →∞ limit for the avalanches temporal
distribution atλcritical ≈ 0.667 [5]

p(t) ≈ t−r τ →∞
with τ ≈ 1.07. The mean avalanche temporal size diverges asλ→ λcritical

t̄ ≈ |λ− λcritical|−γ

with γ ≈ 2.7 [5]. The model also shows critical behaviour in the versions with more than
one dimension or with slightly modified dynamics [5, 7].

In this paper we propose a new approximated solution. Our treatment focuses on the
dynamics of the avalanche spatial width in a mean-field approach. In the BS model the
avalanche width is a random variable having memory effects; this is removed by updating
all the sites within an avalanche (see section 2 for more details), and thus we keep track
only of the spatial extension of the avalanches. This is not possible in the infinite range
approximation [4]. We found the value ofλcritical = 2

3, which is very close to the numerical
result, whereas in the infinite range modelλcritical = 1

3.
This paper is organized as follows. Section 1 presents the general master equation for

the fitness distribution and the derivation of the mean-field equation found with probabilistic
arguments in [2]. Section 2 introduces our analytical treatment based on a mapping in a
random walk problem. In this approximation we compute exactly the value ofλcritical and
the critical exponentsτ and γ as they were defined in [5]. Section 3 presents a way to
improve the method introducing a continuous time random walk description. A numerical
study shows the improvement of the critical exponentτ but λcritical remains fixed. The
details of the calculation are given in the appendix.

1. The master equation

The BS model is completely characterized by the probabilityP(x1, x2, . . . , xN ; t) of finding
the system in the state (x1, x2, . . . , xN ) at the timet given the initial distribution att = 0.
Because there are no memory effects, the evolution of the system is described by the
following master equation,

P(x1, x2, . . . , xN ; t + 1) =
∑
i

∫
dx ′i dx ′i−1 dx ′i+1PstP(i; x1, . . . , x

′
i−1, x

′
i , x
′
i+1, . . . , xN)

×P(x1, . . . , x
′
i−1, x

′
i , x
′
i+1, . . . , xN ; t) (1)

where periodic boundary conditions were assumed andPst(i; x1, . . . , x
′
i−1, x

′
i , x
′
i+1, . . . ,

xN) is the probability to have activity at sitei if the system is in the configuration
(x1, . . . , x

′
i−1, x

′
i , x
′
i+1, . . . , xN ). For the original one-dimensional BS model

Pst(i; x1, x2, . . . , xN) =
∏
j 6=i

θ(xj − xi) (2)

whereθ(x) is the step function

θ(x) =
{

1 if x > 0

0 if 6 0.

At stationarity, integrating in (1) overx2, . . . , xN we easily obtain the following relation,

Pac(1, x1)+ Pac(2, x1)+ Pac(N, x1)− 3

N
= 0 (3)
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where

Pac(i; xj) =
∫

dx1 . . . dxj−1 dxj+1 . . . dxNPst(i; x1, . . . , xN)P (x1, . . . , xN)

is the probability of having activity in sitei when in sitej the fitness has the value
xj . If in equation (3) we try a stationary self-consistent mean-field solution of the form
p(x1, . . . , xN) = p(x1)p(x2) . . . p(xN), after some algebra we obtain(

1− 2

N − 1

)
QN(x)+ 2N

N − 1
Q(x)+ 3x − 3= 0 (4)

with Q(x) = ∫ 1
x
p(x ′) dx ′. Equation (4) was previously obtained in [3], in theN → ∞

limit one findsp(x) = 3
2, x ∈ (λcritical, 1) andp(x) = 0 whenx ∈ (0, λcritical), λcritical = 1

3

whereas numericallyλcritical ≈ 2
3 [2]. The statistical independence between the sites in the

mean-field solution allows the reduction of the problem at a one-dimensional random walk
on the positive semi-axis where the staten represents the state of the system withn fitness
values greater thenλ. The solution developed in [4] gives the sameλcritical as predicted by
equation (4) and the critical exponentsτ = 3

2, λ = 1.

2. The new approach

The size of aλ-avalanche is defined as the number of steps between two consecutive events
with no fitness below the valueλ; hence, it is a quantity characterizing time intervals. For
a system of sizeN , with free boundary conditions, we define the avalanche width at a
given timet as the number of sites between the left most species with the fitness lees than
λ and the right most species with the fitness less thanλ. The species between these two
sites can have any value of the fitness. This is a quantity which characterizes the spatial
structure of the system. The width evolution has memory effects for the originally proposed
dynamics; in the spirit of the mean field we approximate the evolution of the avalanche
width as follows: at every step the species between the right and left extremities of the
avalanche are updated independently and we also update the nearest neighbour site at the
right or left extremity of the avalanche accounting for the fact that in the original dynamics
an avalanche can increase its width only with one site. The complete randomness makes
the movements of the two extrema completely equivalent and for this reason we choose to
move only in one direction. At the origin we also accept a two sites step.

In this approach the avalanche width is a random variable without memory effects on
a discreet set of states which now can be extended to the entire non-negative semi-axis
with the zero state corresponding to the state with no species blowλ and the staten to a
realization of the BS model withn sites between the left most and the right most sites with
the value of their fitness less thanλ. The evolution rules produce the following transition
matrix for the avalanche width:

p =



(1− λ)2 2λ(1− λ) λ2 0 0 . . .

(1− λ)2 2λ(1− λ) λ2 0 0 . . .

(1− λ)3 3λ(1− λ)2 2λ2(1− λ) λ2 0 . . .

(1− λ)4 4λ(1− λ)3 3λ2(1− λ)2 2λ2(1− λ) λ2 . . .

...
...

...
...

...

 . (5)
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The formulae for the matrix elements are

p00 = (1− λ)2 p01 = 2λ(1− λ) p02 = λ2 p0j = 0 j > 2

pj0 = (1− λ)j+1 j > 1

pj1 = (j + 1)λ(1− λ)j j > 1

pj2 = jλ2(1− λ)j−1 j > 1

pjl =
{
pj+1,i−1 if l > 2 andj 6 l − 1

0 otherwise
(6)

with the convention thatpij is the transition probability from the statei to the statej and
i, j ∈ {0, 1, 2, . . .}. The distribution probability of avalanches is the first return probability
distribution for the above-defined random walk and it can be written as

p(n+ 2) =
∞∑
i=1

p01p̃
(n)

1i pi0+
∞∑
i=1

p02p̃
(n)

2i pi0 (7)

wherep̃(n)1i of the i, j element of thenth power of the matrixp̃ describing the evolution of
the random walk outside of the origin. The matrixp̃(n)ij is obtained from the matrix̃p by
setting to zero its first row and first column. The first (second) term on the right-hand side
of equation (7) represents the first return probability aftern steps when the initial step is
single (double).

Since we are concerned only with the asymptotic behaviour of the model we can modify
the first two columns of the transition matrixp so as to have the same elements on the
diagonals of thẽp matrix. Keeping the closure relation

∑
j p̃ij = 1 we produce the following

matrix:

p′ =



(1− λ)2 2λ(1− λ) λ2 0 0 . . .

(1− λ)2(1+ 2λ) 2λ2(1− λ) λ2 0 0 . . .

(1− λ)3(1+ 3λ) 3λ2(1− λ)2 2λ2(1− λ) λ2 0 . . .

(1− λ)4(1+ 4λ) 4λ2(1− λ)3 3λ2(1− λ)2 2λ2(1− λ) λ2 . . .

...
...

...
...

...
. . .

 . (8)

The asymptotic behaviour of the first return time distribution is the same for both random
walks described by the matricesp andp′. In fact, in equation (7) we can go a step further
developingp̃(n)1i with respect to site 1. The remaining matrix from the second column and
second row is identical with thẽp′ matrix obtained fromp′ in the same way as̃p from p:

p̃
(n)

1i =
∑

n1+···+nj
=n−n′

j∏
l=1

( ∞∑
k=2

p̃12p̃
(nl )

2k p̃k1

)
((1− δ1i )p̃12p̃

(n′)
2i + δ1i p̃

(n′)
11 ) (9)

with n = n′+n1+· · ·+nj andδij the Kronecker symbol. The terms in equation (9) represent
multiple returns on site 1 before the last step to the origin. In then→∞ limit the terms
with n′ and all thenj bounded but one have the same asymptotic behaviour asp̃

(n)

1i because
they are generated by the same matrix; the other terms will decay exponentially, due to
the p̃j12 factor, or as a power of the leading term when there are two or more unbounded
indices. If i = 1, n′ has to be bounded to avoid the exponential decay.

In the appendix we present the computation for the generating function of the avalanche
distribution probabilityR(z) = ∑

t z
tP (t) (A15). The average time for the avalanche

distribution is

t̄ = dR(ξ)

dz

∣∣∣∣
z=1

= dR(ξ)

d(ξ)

dξ

dz

∣∣∣∣
z=1

. (10)
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Using equation (A15) we obtain that the mean time of the avalanche distribution can be
written as

t̄ ≈ |λ− λcritical|−γ (11)

when |λ − λcritical| � 1, with the critical exponentγ = 1 and the critical value ofλ,
λcritical = 2

3. We can also compute the asymptotic behaviour of the avalanches probability
distribution using equation (A16) [10]. Forλ = 2

3 we found

p(t) ≈ t−γ t →∞ (12)

with τ = 3
2. For λ 6= 2

3 the decay is exponential.
In the previous equations the critical exponentτ = 3

2 andγ have values as obtained in
the mean-field solution [4], whereasλcritical = 2

3 is in extremely good agreement with the
critical value ofλ found in numerical simulations [2, 6, 7]. In the language of the Markov
chain one can say thatλ = 2

3 is the transition point between persistent states (λ 6 2
3) and

transient states (λ > 2
3) [9]. Neverthelessλ is not a dynamical parameter for the BS model,

since it introduces an ‘observational window’ for a certain variable which we may choose
from the set of statistical variables compatible with the dynamics of the BS model. SOC
appears when there is at least one statistical variable with events at all scale lengths. In our
approachλ-avalanches are bounded to the origin forλ < 2

3 and they escape to∞ for λ > 2
3.

At λ = 2
3 we have the peculiar stationary state in which the average time of avalanches is

diverging; therefore, there are events on the all time scales.

3. Improving mean field

A significant difference between the random walk proposed in the previous section and
the BS model consists of the fact that in the latter the system will spend a characteristic
number of steps in a given state because the activity can appear between the leftmost and
the rightmost sites where the fitness is less thanλ. One possible way to improve our
approximation is to promote the previous random walk to a continuous time random walk
with inhomogeneous waiting time distributions, each waiting time distribution allowing for
the persistence of a given size avalanche. The general equation for such a process can be
written [10]

Pik(t) = δik e−ci t +
∞∑
j=0

∫ t

0
ci e−ci tpijPjk(t − t ′) dt ′ (13)

wherePik(t) is the probability density of having the walker in statek at epocht if at t = 0
it was in statei, pij are the elements of thep′ matrix (8) andc−1

i is the characteristic
waiting time in sitei and it represents the average lifetime for an avalanche of sizei in
the BS model. Intuitivity the average time of an avalanche is a function of the average
number of sites with fitness less thanλ which is increasing with the avalanche width; at
criticality we propose the behaviourc−1

i ≈ iχ for i > 0 and c−1
0 = α with α a given

constant.
An avalanche is now defined as an off-time interval from the origin, whose probability

distribution is independent ofα [10]. The avalanche distribution function can be expressed
as

pav(t) =
∞∑
n=1

p(n)pn(t) (14)
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Figure 1. The first return distribution forχ = 1(◦), χ = 1.5(�), χ = 2(M), χ = 2.5(+). The
obtained values forτ (table 1) are very well fitted by the formulaτ = 1+ 1/(χ + 2).

wherep(n) is the probability of ann step excursion out of the origin and it is the first return
probability distribution for the random walk defined in section 2;pn(t) dt is the probability
of the first return to the origin in the intervalt, t + dt aftern steps. Intuitively we may say
that forλ < 2

3 the exponential decay ofp(n) will prohibit the long time avalanches and the
average off-time will be finite [10]. Ifλ = 2

3 there is a qualitative change; even ifpn(t)
decays exponentially the scale invariance ofp(n) for largen leads to critical behaviour.

We have performed a numerical simulation for the continuous time random walk for
both transition matricesp and p′ and we have found the same asymptotic behaviour at
λcritical = 2

3. The size of the lattice was large enough to avoid any size effects and the
waiting time distribution functions have been chosen exponentials with a site-dependent
mean lifetimeti = c−1

i = iχ . The simulations were made choosing four valuesχ = 1, 1.5,
2, 2.5; the asymptotic behaviour is shown in figure 1. The numerical values for the critical
exponentτ (table 1, figure 1) decreases monotonically asχ increases; a very good fit is
given by the formulaτ = 1+ 1/(χ + 2). This behaviour is intuitively clear: the avalanche
tend to last longer if the characteristic lifetimes grow faster andτ → 1 if χ →∞.
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Table 1. The numerical values of the critical exponentτ for four values ofχ .

χ τ

1.0 1.35± 0.01
1.5 1.30± 0.01
2.0 1.25± 0.01
2.5 1.22± 0.01

4. Conclusions

We have proposed a new approach to the Bak–Sneppen evolution model based on the
dynamics of the avalanche width. The critical exponents are equal to those found previously
in the mean-field solution [4], in fact they are universal properties of the one-dimensional
random walk. The valueλcritical = 2

3 is very close to the numerical results reported in [3, 7].
Therefore, we believe that the dynamics of the avalanche width contains useful information
on the critical behaviour for this model. The structure of the generating function (A15) is
intimately connected with the critical behaviour; the branch line appearing in theN →∞
limit generates the algebraic decay for the probability distribution of the avalanches. The
continuous time random walk picture allows for a more careful analysis of the avalanche
structure and it improves theτ critical exponent keepingλcritical at the same value; it also
gives an intuitive decomposition of the algebraic decay distribution of the avalanches in a
convolution of Poisson distributed events. The approximation can be extended to arbitrary
dimensions. The active sites can be included in a minimal convex volumeV . We update
independently all the sites inV and the sites next toV . The maximum diameter of this set
will have the dynamics described by the transition matrixp; therefore, the critical behaviour
will remain unchanged.
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Appendix

We present the detailed calculation for the generating function of the avalanche probability
distribution. We use the special form of the matrixp̄′ obtained from the matrixp′ (8)
removing the line and the row with index zero. This matrix has equal diagonal elements
and we can write it as a linear combination of one-diagonal matricesIi defined as follows:

(Ii)kl =
{
δk+i,l i > 0

δk,l+i 1< 0
(A1)

I0 being the identity matrix. From the definitions (A1) we can compute the commutator
T (i) = I1I−i − I−iI1; for i > 0 we have

(T (i))kl = δi+1,1 (A2)

and for ij > 0 we have the property

IiIj = Ii+j . (A3)
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The matrixp̄′ can be expressed as

p̄′ = λ2I1+ 2λ2(1− λ)I0+
∞∑
i=1

(i + 2)λ2(1− λ)i+1I−i

= λ2I1

∞∑
i=0

(i + 1)(1− λ)iI−i = λ2I1A (A4)

whereA = ∑∞
i=0(i + 1)(1− λ)iI−i . Using equation (A3) it is easy to compute thenth

power of this matrix

An =
∞∑
j=0

(
2n+ j − 1

j

)
(1− λ)j I−j . (A5)

From equation (A2) we can compute the commutatorTn = I1An−AnI1 which has only the
first column non-zero

(Tn)kl =
(

2n+ k − 1

k

)
(1− λ)kδl1. (A6)

Consequently,

(InTn)j1 =
(

3n+ j − 1

j + n
)
(1− λ)j+n. (A7)

All the previous-mentioned properties lead us to the relation

(I1A)
n = InAn −

n−2∑
i=0

IiTi(IiA)
n−i−2. (A8)

Equation (A8) implies the following equation for the generating matrixG(z) =∑∞
i−0(λ

2I1A)
1zi ,

G(z) = F(z)−
∞∑
i=1

IiTiλ
2(i+1)zi+1G(z) (A9)

where F(z) = ∑∞
i=1 IiA

izi , z a complex number. The sums which are appearing in
equation (A9) can be performed in the following way:

uj (z) =
∞∑
k=1

(IkTk)j1λ
2(k+1)zk+1 =

∞∑
k=1

(
3k + j − 1

j + k
)
(1− λ)j+kλ2(k+1)zk+1

= (1− λ)j−1ξ3
∞∑
k=1

1

(k + j)! (3k + j − 1) . . .2kξ2k−1

= (1− λ)j−1ξ3
∞∑
k=1

1

(k + j)!
dk+j

dξk+j
ξ3k+j−1

= (1− λ)j−1ξ3
∞∑
k=1

1

2π i

∮
0

dη
η3k+j−1

(η − ξ)j+k+1

= (1− λ)j−1ξ3 1

2π i

∮
0

dη
ηj+2

(η − ξ)j+1(−η3+ η − ξ) (A10)

whereξ2 = (1− λ)λ2z. We can perform the summation if|η3/(η − ξ)| < 1; this set is

not empty for 0< ξ < 2
3

√
1
3. There is an annulus with inner radius and external radius

obtained from the positive solutions of the equation(r + ξ)3 − r = 0; more over, one of
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the roots of the polynomial−η3 + η − ξ is inside the minimal integration contour0 for

0 < ξ < 2
3

√
1
3 and the other two are outside the maximal integration contour. Using the

above-mentioned properties of the matrices{Ik} (A3) we can compute the elements of the
matrix InAn which appear in the expression of the generating matrixF(z):

(InA
n)1j =

(
3n− j
n− j + 1

)
(1− λ)n−j+1 (InA

n)21 =
(

3n
n+ 1

)
(1− λ)n+1

(InA
n)2j = (InAn)1j−1 j > 1.

Equation (7) shows that we need to compute only the first two rows in the generating
matricesG(z) andF(z). The general formula for these matrix elements ofF(z) is

F1j (z) = δj1+
∞∑

n=j−1

(1− λ)n−j+1

(
3n− j
n− j + 1

)
λ2nzn.

The previous series can be summed following the same computational path as in
equation (A10). Ifj = 1 we obtain

F1,1(ξ) = 1+ ξ

2π i

∮
0

η2

(η − ξ)(−η3+ η − ξ) .

For j > 1 we have the following expression:

F1j (ξ) = ξ

(1− λ)j−1

1

2π i

∫
0

η2j

−η3+ η − ξ .

F2j (z) = F1j−1(z), j > 1, becauseInAn has equal elements on diagonals, and by direct
calculation

F21(z) =
∞∑
n=1

(
3n
n+ 1

)
(1− λ)n+1zn = 1− λ

2πi
ξ

∮
0

η3

(η − ξ)2(−η3+ η − ξ) .

In all the above formulae the contour0 is the same as that used in equation (A10) and
ξ2 = (1− λ)λ2z. Solving equation (A9), we obtain for the first two rows the solutions in
terms of the previously computed functionsu1(z), u2(z), F1j (z) andF2j :

G1,j (z) = F1j (z)

1+ u1(z)

G2,j (z) = F2j (z)− u2(z)

1+ u1(z)
F1j (z).

The residue theorem allows us to compute the generating functions in terms of the third
solutions of the polynomial−η3 + η − ξ , η3(ξ), that solution which lies inside of the
integration contour0 in the above integrals:

G1,j (ξ) = 1

(1− λ)j−1

η3(ξ)
2j

ξ2
i > 1 (A11)

G2,j (ξ) = − 1

(1+ λ)j−2

(
1

ξ2
− 2

)
η3(ξ)

2j

ξ2
j > 1 (A12)

with ξ2 = λ2(1− λ)z and

η3(ξ) = − 1− i
√

3

22/3(−27ξ +
√

729ξ2− 108)1/3
− (1+ i

√
3(−27ξ +

√
729ξ2− 108)1/3

621/3
. (A13)
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From equation (7) for the avalanche probability distribution one can write the generating
function:

R(z) = (1− λ)2z + z2p01

∞∑
i=1

G1i (z)pi0+ z2p02

∞∑
i=1

G2i (z)pi0

= (1− λ)2z + 2λ(1− λ)z2
∞∑
i=1

1

1+ u1(z)
F1i (z)(1− λ)i+1(1+ (i + 1)λ)

+z2λ2
∞∑
i=1

(
F2i (z)− u2(z)

1+ u1(z)
F1i (z)

)
(1− λ)i+1(1+ (i + 1)λ). (A14)

The series which are appearing above can be summed and the closed expression for the
generating function reads

R(ξ(z)) = −2
1− λ
λ

ξ2+ 2(1− λ)
λ3

ξ2η3(ξ)
2

(
1+2λ+ η3(ξ)

2

1− η3(ξ)2

(
1+ λ3− 2η3(ξ)

2

1− η3(ξ)2

))
+1− λ

λ2
(1− 2ξ2)η3(ξ)

2

(
1+ 2λ+ (1+ 3λ)η3(ξ)

2

+ η3(ξ)
4

1− η3(ξ)2

(
1+ λ4− 3η3(ξ)

2

1− η3(ξ)2

))
. (A15)

Making the substitutionz = e−s we obtain

1− R(s) ≈ s1/2 if λ = 2
3, s → 0. (A16)

If λ 6= 2
3, R(s) is an analytical function at the origin.
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